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Density Functional Calculations on Heterocyclic
Compounds. Part 1. Studies of Protonations of
5- and 6-Membered Nitrogen Heterocyclics
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Abstract: Density functional calculations at LSD, NLSD/6-31G*, DZVP2 levels were performed on azoles,

azines and their pr dforms. G ies and dipole moments were well described by both global bases.
Energies obtained at NLSD(BP)IDZVP2 level are reasonably comparable with high level ab initio and
experimental data. For atomic charges, LSD/6-31G* level gave acceptable results.

Studies on protonation of heterocyclic compounds are of great interest from not only chemical but also
pharmacological points of view. The reactivity of a heterocyclic base caused by protonation may vary in
characteristic way. Thus, the site of protonation is closely related to expression of biological activity and
often involved directly in receptor-ligand interactions in biological systems. We have been highly motivated
in these fields as being continuously interested in the mechanistic and medicinal chemistry of nitrogen
heterocycles.

Recently, semiempirical,2-5 and ab initio%-8 studies on azoles and azines have been carried out in order to get
quantitative and predictive tools for studying their proton affinity,? by which more insight into their basicities
can be available. Of semiempirical procedures, the AM1 method failed to treat correctly the electrostatic
proximity effects,3 operating in the relative basicities and acidities of 1,2-azoles and -diazines.10 Although
empirical corrections were proposed to eliminate this defect,4 further examinations seem to be necessary for
proving general validity. INDO was found to be a qualitatively better approach in spite of relatively large
deviations.

The experimental proton affinities could be reproduced in the correct order by high-level ab initio calculations,
nevertheless, Méller-Plesset correlation treatment had to also be included to get approximate numerical values
after taking the zero-point vibrational energy change with other energy terms into consideration.” However,
ab initio calculations at high level are seriously limited by the enormous computational efforts required for
polysubstituted molecules, the ordinary building blocks found in the synthetic chemistry. In this context, an
alternative method, which is computationally more effective but not at the expense of accuracy, is really
needed.
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Density functional theory (DFT) has recently been recognized as an efficient tool for studying properties of
molecules. The local density approximation (LDA) is the fundamental approximation of the theory,11 and
leads to the local spin density (LSD) level of theory. According to LDA, the exchange-correlation energy is a
local functional of the density. It is important from practical point of view that in the DF methods the need for
computational resources scales as -N3, or close to N2, therefore larger molecules can also be examined in
reasonable computational time (cf. ab initio scales as N4-N7). Promising results have been reported so far for
geometric parameters, energetics, vibrational frequencies and dipole moments of small neutral organic
molecules!2-15 and calculations on large Zn-insulin fragments were also described.12d

In this paper, we wish to report the examination and the result of DF approaches for protonation enthalpies,
geometric parameters, and dipole moments of a set of azoles and azines (Chart). Charge data of
compounds containing a C(O)-N structural element, and a tautomerism will also be discussed. Each of them
represents an important field, where the DFT has not yet been systematically tested. Full geometric
optimizations were carried out at LSD/DZVP2, 6-31G* levels of the theory and NLSD (Becke-Perdew)
energies were also calculated.
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COMPUTATIONAL METHODS

All calculations were done on a Cray-YMP supercomputer with a DGauss program.16 Full geometric
optimizations were carried out with 6-31G* and DZVP2 global basis sets, using P1 and A2 auxiliary bases,
respectively. For calculations with 6-31G* and DZVP2 bases, AM1 and 6-31G* optimized structures were
used as initial geometries, respectively. Energetics were obtained at LSD, NLSD (BP)/6-31G*, DZVP2
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levels of theory. The BP non-local corrections were done after the final SCF. The following computational
parameters were employed, for INTACC, XCGRID, CVSCF, CVDENS, CVENER, VCGRAD ‘medium’
options, corresponding to 5.0E-05, 5.0E-07, and 8.0E-04 values for SCF convergence thresholds of the
density, and total energy, and for convergence criterion of the largest gradient component, respectively.
Typically, these calculations needed at the most several hundreds sec CPU time.

RESULTS AND DISCUSSION

The geometric data are reported in Table 1 and 2. Bond lengths and angles were generally well reproduced,
and the errors are within £0.01A and +1.0°, respectively. Larger deviations from experimental values were
observed for carbon-nitrogen bonds of imidazole (3), pyrimidine (9), oxazole (13) and 2(1H)-pyridone (16),
for carbon-hydrogen bonds of pyridine (5) and 16 as well as for the nitrogen-nitrogen bond of pyrazole (1).
In the case of pyridone (16), differences between the calculated and experimental values may however be well
ascribed to intermolecular interactions being present only in the crystalline state. The most striking errors
were found for two angles of pyrimidine (9) differing the calculated values from the experimental ones by -
2.6 and -2.0 degrees.

Of carbon-oxygen bonds, distances of the carbonyl bond of 16, and one of the carbon-oxygen bond of 13
were within the +0.01A errors, whereas the calculated length of C(5)-O(1) in 13 slightly exceeded this limit.
Both the DZVP2 and 6-31G* bases gave similar results, and no significant differences could be observed
either in the trend of errors, or in their absolute values. A reasonable agreement between these basis sets was
also found for geometric parameters of protonated compounds.

Total energies, calculated and experimental protonation enthalpies are listed in Table 3. Total energies
obtained at the LSD level of the theory were comparable to but slightly more negative than energies calculated
by HF method at 3-21G//3-21G level. As expected, including non-local corrections, DF total energies were
significantly reduced at both DZVP2 and 6-31G* levels for every compound. Since the total energies of
protonated forms were even more reduced than those of the corresponding bases, the protonation enthalpies,
accordingly, were decreased by ca. 4-5 kcal/mol upon BP treatments. Nevertheless, numerical values
obtained at different levels of the theory are comparable to one anothers, and to ab initio enthalpies.
Interestingly enough, almost the same protonation enthalpies were obtained at the LSD/6-31G* and
LSD+BP/DZVP2 levels. The experimental basicity order was fully reproduced by three of the four methods.
The LSD/6-31G* level failed to describe only the relative basicities of pyrazine (11) and oxazole (13).
Assuming that the zero-point energy change and other contributions for the protonation (the former one is
dominating) may affect the energetics calculated by ca. 6-8 kcal/mol (cf. ref.”), a fairly good agreement
between LSD+BP/DZVP2 energies and experimental proton affinities is observed for every case. For
pyrazole (1) and its protonated form (2), we also calculated the zero-point energy change (8.0 kcal/mol),
which agreed well with the ab initio datum (8.9 kcal/mol) showing the fact that the latter value is
overestimated by ca. 10%.7 Taken then for AE; and PV the same values obtained by ab initio, our calculated
proton affinity is 214.3 kcal/mol, which is well comparable with the experimental (212.8 kcal/mol) and ab
initio (216.0 kcal/mol) values. The agreement is also reasonable for a number of protonations at the LSD/6-
31G* level. Additionally, it is noteworthy that the relative O, N basicities of oxazole (13 — 14,15) as well
as relative stabilities of the syn and anti conformers of 2-hydroxypyridine (20 and 19) were well predicted.
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The 2-hydroxypyridine — 2(1H)-pyridone tautomeric equilibrium has been extensively investigated by
experimental and theoretical methods. It was established that only high level ab initio calculations could
accurately describe the energy difference between the tautomeric forms of 17 — 16 (AHexp = 0.6 £ 0.3
kcal/mol, AHcgicq (6-31G*//3-21G) = 1.0 kcal/mol).20 Qur results shown in Tuble 3 confirm that the DF
approaches studied failed to properly treat this equilibrium. Though the absolute errors, -1.1, -1.2 kcal/mol
are relatively small with DZVP2 basis at both the LSD and NLSD levels, in fact, each calculation predicted
incorrectly that 16 should be more stable than 17.

Atomic charges were next investigated. We were particularly interested in the analysis of compounds
containing C(O)-N structural elements, in which the charge distributions may be directly related to their
ambident behaviour. Mulliken net charges for compounds 13-20 and formamide (21) as a structurally
relating compound, are listed in Table 4. Comparison with experimental and HF/6-31G** data indicates that
within the frame of DFT, the 6-31G* basis performed better. Results obtained with DZVP2 basis clearly
demonstrate that the polarization of carbon-heteroatom bonds are substantially underestimated by this basis.
This trend is especially noticeable in cyclic compounds as compared with the acyclic analogue, formamide
(13, 14, 16, 17 and 21). The LSD optimized basis set is more diffuse than the 6-31G* basis leading to
larger delocalization of charges,13 and this also manifests in calculation of atomic charges. On the other hand,
atomic charges seem to be well treated by 6-31G* basis, and it provides correct accounts for charge
separations in amides and related systems.

Table 5. Dipole moments of compounds 1 - 20.

1))
compound LSD/6-31G* LSD/DZVP2 exp.2
1 2.31 2.35 221
2 2.57 2.55
3 3.79 3.90
4 1.36 1.37
5 2.20 2.42 2.22
6 1.93 1.93
7 4.11 4.18 3.95
8 2.39 2.43
9 2.31 2.54 2.33
10 3.87 3.95
11 0.00 0.00 0
12 4.62 474
13 1.60 1.64 1.50
14 2.78 2.82
15 4.96
16 4.06 4.47
17 1.04 1.35
18 3.27
19 0.25
20 3.14

a) References: [17f] for 1: [17b] for §; {17¢] for 7; [17b] for 9; [17¢] for 11; {17a] for 13.
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Dipole moments for compounds 1- 20 are presented in Table 5. As can be seen from the table, the calculated
values are reasonably close to the experimental data, nevertheless the errors are significantly larger with the
DZVP2 basis set.

CONCLUSIONS

In conclusion, our present data demonstrate that the density functional theory is a suitable investigative tool
for protonation enthalpies, geometric parameters, atomic charges and dipole moments of important
representatives of heterocyclic compounds. Protonation enthalpies calculated at NLSD(BP)/DZVP2 level of
threory are favourably comparable with high level ab initio and experimental values. Relative basicity order of
azoles and azines representing a wide range in the basicity scale is also correctly described by the LSD/DZVP2
as well as the NLSD/6-31G* levels. Bond lengths are generally within £0.01A or at most 10.02A, and bond
angles within +1.0° with both basis sets studied. For calculations of atomic charges and dipole moments the
6-31G* basis set seems to be more appropriate. Although the more detailed investigation is still required, it is
clear that lactam-lactim tautomeric equilibria are great challenges for DFT. This field will be further
investigated in a forthcoming paper. We hope that the present study might emphasize the practical and
possible usage of the density functional theory in the heterocyclic chemistry as a computationally efficient
quantum chemical method.
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